2. 弹性形变能量

  • 原子间作用力和距离的关系图像

    • 在以前的学习中我们认为 E=σϵE = \frac \sigma\epsilon

      • 但是真实情况下并不是正比关系,而是在零点附近存在接近线性的关系
      • E=dσdϵxe=(xeA×dPdx)xeE = \frac{d\sigma}{d\epsilon}|*{x_e} = (\frac{x_e}{A}\times\frac{dP}{dx})|*{x_e}
      • 在靠近最大点处认为已经开始了fracture
      • 超过最大点认为是 完全解体
    • 共价键强度 1000 GPa1000\ GPa

    • 离子键强度 100 GPa100\ GPa

    • 聚合物的分子间作用力 3 GPa3\ GPa

  • 轴向力

    • 理论承受度 thoretical cohesive tensile strength

      • σbE10\sigma_b \approx \frac{E}{10}
      • 或者对于一般金属 σb=10GPa\sigma_b = 10GPa
      • 这里的 σb\sigma_b 表示的是 fracture stress,也就是超过了就解体了(应该是ss图像中真实曲线上的点,不是等效点)
  • 切向力

    • 微观结构

    • 对晶体施加一个大于 theoretical 的压强的时候,不同层之间的原子会发生相对滑移,并且只要发生原子换位置就相当于发生了塑性形变,并且由于晶体结构的高度对称性我们可以看到受力满足正弦函数关系

    • 理论值小于实际值的原因:

        1. 结构缺陷导致强度降低
        1. 轴向力会小 10 - 100 倍
        1. 切向力会小 300 - 10000 倍
        1. 单晶晶须具有接近理论强度的性质
      • 塑性形变更容易发生于切向力作用

        • 因为平移更容易 (incremental atom shift)
  • 塑性形变原因

    • 刃位错和螺位错的移动导致的(键都是一根根断的)
    • 对于没有dislocation 的情况,原子相对滑动最容易发生在最大面密度平面和最大线密度方向